The refrigeration process begins with the compressor. Ammonia gas is compressed until it becomes very hot from the increased pressure. This heated gas flows through the coils behind the refrigerator, which allow excess heat to be released into the surrounding air. This is why users sometimes feel warm air circulating around the fridge. Eventually the ammonia cools down to the point where it becomes a liquid. This liquid form of ammonia is then forced through a device called an expansion valve. Essentially, the expansion valve has such a small opening that the liquid ammonia is turned into a very cold, fast-moving mist, evaporating as it travels through the coils in the freezer. Since this evaporation occurs at -27 degrees F (-32 degrees Celsius), the ammonia draws heat from the surrounding area. This is the Second Law of Thermodynamics in effect. Cold material, such as the evaporating ammonia gas, tend to take heat from warmer materials, such as the water in the ice cube tray.
As the evaporating ammonia gas absorbs more heat, its temperature rises. Coils surrounding the lower refrigerator compartment are not as compact. The cool ammonia still draws heat from the warmer objects in the fridge, but not as much as the freezer section. The ammonia gas is drawn back into the compressor, where the entire cycle of pressurization, cooling and evaporation begins anew.